



# Course Handbook

**Empowering European Universities to  
Lead Deep Tech Innovation in Sustainable  
Energy & Clean Technologies**

**Renewable energy sources in  
agricultural production**

Instructors: Mykola Tregub, Lesia Karpuk

Supported by



Climate-KIC



Funded by the  
European Union



## CONTENTS

|                                       |   |
|---------------------------------------|---|
| Course Information.....               | 3 |
| Course Summary.....                   | 3 |
| Learning Outcomes.....                | 3 |
| Assessment.....                       | 4 |
| Mentoring.....                        | 4 |
| Bibliography.....                     | 4 |
| Other Important Information.....      | 5 |
| Course Timetable.....                 | 5 |
| Contact Details of Instructor(s)..... | 5 |

## Course Information

Renewable energy sources in agricultural production

Instructor(s): Mykola Tregub, Lesia Karpuk.

ECTS credits: 2

|                     |          |
|---------------------|----------|
| Course structure:   | 60 hours |
| Lecture classes     | 10 hours |
| Laboratory classes  | 10 hours |
| Personal Activities | 40 hours |

Mode of delivery: hybrid

## Course Summary

This course aims to develop an understanding among participants of the modern principles and technologies for using Renewable Energy Sources (RES) in agriculture. It covers the production and application of biodiesel, bioethanol, biogas, and the use of solar and wind energy for energy supply in agricultural production. The course combines the theoretical foundations of energy processes with practical calculations of energy potential, installation energy efficiency, and the possibilities for integrating RES into production cycles

Upon completion of the course, participants will acquire competencies in the assessment, design, and modeling of energy systems for farms, as well as in applying the principles of sustainable development and energy independence in the agricultural sector.

The competencies gained during the course will enable graduates to work effectively in the field of renewable energy, environmental consulting, energy project management, and contribute to achieving sustainable development goals.

## Course Participants

This course is designed for a diverse audience, including engineering students, young specialists in the agricultural sector, and researchers who seek to master alternative energy technologies.

### Potential participants are:

- ✓ Students at the bachelor's, master's, or doctoral level in engineering, agronomy, or related fields who wish to expand their knowledge of the fundamentals of producing and applying renewable energy sources.
- ✓ Specialists and practitioners from industry (manufacturing, automation, logistics, energy, etc.) who seek to improve their knowledge and practical skills in calculating energy potential,

installation energy efficiency, and the possibilities of integrating renewable energy sources into production processes.

- ✓ Academic and non-academic staff of research institutes, universities, and companies interested in research into the processes of production and use of renewable energy sources.

#### Prerequisites:

- ✓ A basic understanding of general physics, thermal engineering, and an understanding of agricultural technological processes will be an advantage.
- ✓ In-depth knowledge of engineering is not required; however, participants should be interested in alternative energy sources and the fundamentals of energy.
- ✓ The course is open to participants with diverse disciplinary and professional backgrounds, and a readiness to work in an interdisciplinary environment will be an advantage.

#### Learning Outcomes

Upon completion of the course, participants will be able to:

- 1) Identify the main types of renewable energy sources and their application in the agricultural sector.
- 2) Explain the principles of production of biodiesel, bioethanol, and biogas.
- 3) Evaluate the energy potential of solar, wind, and bioenergy systems.
- 4) Calculate the capacity and efficiency (KPD) of solar panels, wind turbines, and biogas plants.
- 5) Analyze the effectiveness and environmental benefits of implementing RES in agriculture.
- 6) Be able to conduct an energy analysis of production systems.

#### Assessment

In order for each participant to complete successfully the course and be awarded the corresponding ECTS credits, they must pass the course assessment. The outcome of the assessment can be either Pass or Fail.

#### Assessment methods

- Exam. 30 different topics are offered to assess the obtained by the participants' competencies. The content of the exam work includes: topic importance, description of state-of-the-art level of technologies and modern practical trouble killers, tendencies of development. An exam work must include schemes, formulas, plots, text, etc. Number of words > 500. Provided calculations benefit an exam work. The proper format: A4, 14 pt + Times New Roman.

| Assessment Methods                                                                                                                                                            | Examples of Assessment   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| <ul style="list-style-type: none"><li>• Identify the main types of renewable energy sources and know the specifics of their application in the agricultural sector.</li></ul> | Exam + Oral Presentation |
| <ul style="list-style-type: none"><li>• Explain the principles of obtaining energy from biomass of plant origin.</li></ul>                                                    | Exam + Oral Presentation |

|                                                                                                  |                          |
|--------------------------------------------------------------------------------------------------|--------------------------|
| • Evaluate the energy potential of solar, wind, and bioenergy systems.                           | Exam + Report            |
| • Calculate the capacity and efficiency (KPD) of solar panels, wind turbines, and biogas plants. | Exam + Report            |
| • Justify the effectiveness of applying alternative energy sources;                              | Exam + Oral Presentation |
| • Apply methods of energy-ecological analysis to optimize autonomous energy supply systems.      | Exam + Quiz              |

## Mentoring

As part of the course, participants will receive individual mentoring during the completion of their assignment/project, or will gain practical experience in evaluating the possibilities of applying RES in the conditions of a specific agricultural enterprise or community.

Depending on their experience and interests, they may focus on areas such as:

- ✓ Applied research based on the analysis of the effectiveness of photovoltaic systems at agricultural production facilities;
- ✓ Integration of solar and wind installations into farm energy supply systems;
- ✓ Calculation of the energy potential of the region's biomass;
- ✓ Development and design of equipment for obtaining energy from biomass of plant origin;
- ✓ Research based on determining the potential for implementing renewable energy sources.

This mentoring component ensures that each participant develops practical competencies while adapting the learning outcomes to their individual professional or academic goals.

## Bibliography

1. Bündschuh, J., & Chen, G. (Eds.). (2014). *Sustainable energy solutions in agriculture*. Routledge. <https://www.routledge.com/Sustainable-Energy-Solutions-in-Agriculture/Bündschuh-Chen/p/book/9781138077744>
2. Bündschuh, J., Chen, G., Chandrasekharam, D., & Piechocki, A. (Eds.). (2017). *Geothermal, wind and solar energy applications in agriculture and aquaculture*. Routledge. <https://www.routledge.com/Geothermal-Wind-and-Solar-Energy-Applications-in-Agriculture-and-Aquaculture/Bündschuh-Chen-Chandrasekharam-Piechocki/p/book/9780367573317>

3. Outlaw, J., Collins, K., & Duffield, J. (Eds.). (2005). *Agriculture as a producer and consumer of energy*. Iowa State Press. <https://www.nhbs.com/agriculture-as-a-producer-and-consumer-of-energy-book>
4. Mohamed, N. N. (2020). *Energy in agriculture under climate change*. Springer. <https://link.springer.com/book/10.1007/978-3-030-38010-6>
5. Ciolkosz, D. (Eds.). (2022). *Regional perspectives on farm energy*. Springer. <https://link.springer.com/book/10.1007/978-3-030-90831-7>
6. Pestisha, A., [et al.]. (2023). On-farm renewable energy systems: A systematic review. *Renewable Energy*, XX, 1–15. <https://ouci.dntb.gov.ua/en/works/4yE3ZoL4>
7. Bolyssov, K., Orazbayev, B., & Yesbolov, N. (2023). Features of the use of renewable energy sources in agriculture. *International Journal of Energy Economics and Policy*, 13(1), 74–83. <https://www.econjournals.com/index.php/ijEEP/article/view/7443>
8. Türkmen, A. (2020). Renewable energy applications for sustainable agricultural systems. *International Journal of Innovative Approaches in Agricultural Research*, 4(2), 155–167. <https://ijjaar.penpublishing.net/makale/1830>
9. Zhao, Y., & Li, Q. (2022). Renewable energies in the agricultural sector: A perspective analysis of the last three years. *Energies*, 16(1), 345. <https://www.mdpi.com/1996-1073/16/1/345>
10. Zhang, W., Chen, L., & Liu, H. (2021). Renewable energy sources based on agricultural production: Potential applications within the Silk Road Economic Belt framework. *European Journal of Sustainable Development*, 10(3), 281–294. <https://ecsdev.org/ojs/index.php/ejsd/article/view/1381>

## Other Important Information

**Course evaluation:** Upon successful completion of the course, participants are required to fill in the course evaluation questionnaire.

**Certificate:** Upon successful completion of the course, participants will be issued a certificate of achievement provided by The Cyprus Institute and EIT Climate KIC.

**Plagiarism:** CyI has explicit rules concerning academic dishonesty including plagiarism. Course participants are reminded that all work submitted as part of the requirements for any examination (including coursework) of CyI must be expressed in their own words and incorporated in their own ideas and judgements.

## Course Timetable

| Session         | Date and Time                          | Instructor                     | Venue                      |
|-----------------|----------------------------------------|--------------------------------|----------------------------|
| 1 <sup>st</sup> | October 20 <sup>th</sup> , 14.00-15.20 | Mykola Tregub,<br>Lesia Karpuk | Auditorium 14,<br>Campus 1 |
| 2 <sup>nd</sup> | October 21 <sup>th</sup> , 14.00-15.20 | Mykola Tregub,<br>Lesia Karpuk | Auditorium 14,<br>Campus 1 |
| 3 <sup>rd</sup> | October 22 <sup>th</sup> , 14.00-15.20 | Mykola Tregub,<br>Lesia Karpuk | Auditorium 14,<br>Campus 1 |



Supported by



|                  |                                        |                                |                            |
|------------------|----------------------------------------|--------------------------------|----------------------------|
| 4 <sup>th</sup>  | October 23 <sup>th</sup> , 14.00-15.20 | Mykola Tregub,<br>Lesia Karpuk | Auditorium 14,<br>Campus 1 |
| 5 <sup>th</sup>  | October 24 <sup>th</sup> , 14.00-15.20 | Mykola Tregub,<br>Lesia Karpuk | Auditorium 14,<br>Campus 1 |
| 6 <sup>th</sup>  | October 27 <sup>th</sup> , 14.00-15.20 | Mykola Tregub,<br>Lesia Karpuk | Auditorium 14,<br>Campus 1 |
| 7 <sup>th</sup>  | October 28 <sup>th</sup> , 14.00-15.20 | Mykola Tregub,<br>Lesia Karpuk | Auditorium 14,<br>Campus 1 |
| 8 <sup>th</sup>  | October 29 <sup>th</sup> , 14.00-15.20 | Mykola Tregub,<br>Lesia Karpuk | Auditorium 14,<br>Campus 1 |
| 9 <sup>th</sup>  | October 30 <sup>th</sup> , 14.00-15.20 | Mykola Tregub,<br>Lesia Karpuk | Auditorium 14,<br>Campus 1 |
| 10 <sup>th</sup> | October 31 <sup>th</sup> , 14.00-15.20 | Mykola Tregub,<br>Lesia Karpuk | Auditorium 14,<br>Campus 1 |

## Contact Details of Instructor(s)

| Name          | Email                     | Telephone number |
|---------------|---------------------------|------------------|
| Mykola Tregub | tregyb.m.i@gmail.com      | +380970775235    |
| Lesia Karpuk  | lesia.karpuk@btsau.edu.ua | +380679919117    |

Supported by



Funded by  
the European Union



# copilot



Supported by



Supported by



Funded by  
the European Union

